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Hydrodynamic stability and the inviscid limit 

By K. M. CASE 
Department of Physics, The University of Michigan, Ann Arbor, Michigan 

(Received 16 December 1959 and in revised form 31 October 1960) 

It is shown that for appropriately posed problems, the solutions of the linearized 
Navier-Stokes equations approach those of the linearized Euler equations as 
the viscosity tends to zero. 

1. Introduction 
The conventional approach to hydrodynamic stability problems considers 

the Navier-Stokes equations linearized around some basic stationary flow. 
Since the viscosity is usually quite small it seems reasonable, as a first approxima- 
tion, to put it equal to zero at the outset. However, the relation of stability 
results so obtained to those using the full Navier-Stokes equations has been 
rather obscure. The difficulty arises for various mathematical reasons. 

(1) It is commonly stated (to quote, for instance, Lin 1955, p. 126) '. . .that 
there are certain dampedsolutions in aviscous fluid which, in the limit of vanishing 
viscosity, do not reduce to solutions of the inviscid equation throughout the 
whole region of the flow.' 

(2) The solutions of the Om-Sommerfeld equation are quite complicated. In  
particular it is hard to find asymptotic solutions for small viscosity which are 
accurate throughout the entire physical region. 

(3) The inviscid problem is frequently formulated so that the normal modes 
obtained are not mathematically complete. (It is readily shown that the Om- 
Sommerfeld normal modes are complete.) This renders it difficult to see how the 
inviscid normal modes can be used to solve the appropriate initial-value problem. 

Recently (Case 1960) it has been pointed out that there are solutions of the 
linearized Euler equations of stability theory which are, on occasion, overlooked. 
This suggests that, under certain conditions which it should be possible to state 
clearly, results of stability calculations starting from the Navier-Stokes equa- 
tions should pass in the limit of vanishing kinematic viscosity, i.e. Y -+ 0, into 
the results calculated starting from the Euler equations. 

There are several physical arguments which point in this direction. First, it  
may be noted that in quantum mechanics a rather parallel situation exists. In  
passing from the Navier-Stokes to the Euler equations the terms of highest order 
in the derivatives are dropped. Similarly, to pass over to the classical mechanics 
limit from the Schroedinger equation one must drop the terms of highest order in 
the derivatives. We do not doubt, though, that in classical mechanics we have a 
consistent and accurate description of a large, well-defined class of phenomena. 
A second argument is more important. The Euler equations are readily obtained 



Hydrodynamic stability and the inviscid limit 42 1 

as a rough approximation from the equations of statistical mechanics. A better 
approximation gives the Navier-Stokes equations. These in turn are not exact. 
Indeed, it is possible to derive an improved approximation, which consists of a 
set of equations which reduce to the Navier-Stokes equations only on omitting 
certain terms. The essential point is that the omitted terms are those of highest 
order in the derivatives. Thus, if passing from the Navier-Stokes to the Euler 
equations completely changes the character of the theory, it would seem that 
passing from the higher-order equations to the Navier-Stokes equations would 
do the same. If so, hydrodynamics would be no description of nature at all. 

We hope that the main point is clear. It is not that the Euler equations 
describe as wide a class of phenomena as do the Navier-Stokes equations. 
(Classical mechanics does not describe as much as does quantum mechanics.) 
Rather it will be shown that for appropriately posed and restricted problems the 
Euler equations lead to the same results as do the Navier-Stokes equations in 
the limit of zero viscosity. 

Here an approach is followed which leads to the above mentioned 'omitted' 
solutions. The initial-value problem will be solved with the Laplace transform 
technique. The advantage is that we gain the additional freedom of an appro- 
priate choice of the inversion contour in the complex plane. In  particular it is 
possible always to stay in regions where it is simple to construct asymptotic 
(with respect to Y) solutions of the relevant differential equations. It will be 
shown that passing to the limit of zero viscosity in the solution of the initial- 
value problem corresponding to the Navier-Stokes equations yields almost exactly 
the solution of the initial-value problem which follows from the Euler equations. 
The limitations are that the initial perturbations are the same and are smooth in 
the sense of physically realizable perturbations. The method of proof also suggests 
a systematic expansion in terms of inverse powers of the square root of the Rey- 
nolds number. However, this possibility is not explored here. 

2. Statement of the theorem 
For simplicity attention is restricted to two-dimensional parallel flows of a 

homogeneous, incompressible fluid. The flow is between parallel plates at y = 0 
and y = yl. In  the unperturbed state the flow is described by a component 
u,(y) in the x-direction (parallel to the plates) and a y-component vo = 0. We 
linearize the Navier-Stokes equations around this basic flow and take a Fourier 
transform with respect to x and a Laplace transform with respect to time t .  If 

where vl is the perturbed velocity component in the y-direction, then the resulting 
equations can be simplified to 

with (3) 
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and 

These equations are to be solved subject to the boundary conditions 

(4) 

at y = 0, yl. 
In  the inviscid limit we start with the Euler equations. The same sequence of 

approximations and transformations again lead to equation (2)-but with 
v = 0. This equation is then to be solved with only the boundary conditions 

v$ = 0 at y = O,yl. (5')  

(Here and below the convention is adopted that functions labelled with a super- 
script inv describe solutions of the initial-value problem based on the Euler 
equations.) 
Our essential point is the following theorem: 

In view of the introductory remarks this result is hardly surprising. The dis- 
continuous behaviour of upk at the boundaries is also to be expected. In  virtue 
of equation (5) we have upk = 0 at the boundaries for all v. This should also be 
true in the limit. (The discontinuity is only the mathematical description of an 
infinitesimal boundary layer.) 

3. Proof 

is readily constructed. Let $751,2 be two solutions of the homogeneous equation 
First note that a formal solution of equation (3) subject to vpk = 0 at y = 0, y1 

a 2  ikus 
(@-k2-- p + zku, ).j = 0,  

subject to the conditions $751(0) = $752(y1) = 0. (9) 

Then 

where 

(Here y< and y, denote the lesser and greater of y and yo respectively.) 

Also W($751, 5h2) = .jl$75~-$752$75~ = const. (independent of y). (12) 
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For the inviscid case this provides a complete solution. Thus, with v = 0 
it follows from equation (2) that 

- 

V ( y )  = V(Y, 0) 
P + ik%J(Y 1. 

Insertion of this result in equations (13) and (14) yields the transforms of the per- 
turbed flow velocities. 

To prove the theorem, consider the solution V, of equation ( 2 )  for very small, 
but finite, v. Clearly, it is sufficientt to determine V, from 

(16) 

(17) 

(18) 

As usual in applying the Laplace transform method the transform variable p 
is chosen to have a positive real part. This has the result that ~ ( y )  in (16) never 
vanishes. 

I d2 
- -ilcR~(y) V, = - RV(y, O ) ,  

L Y 2  

where R = l / v ,  
i 

and V(Y) = %(Y) -zP. 

To solve equation (16) we consider the homogeneous equation 

{$ - ikBr(y)  A = 0. I 
The asymptotic forms of the solutions of this equation are readily obtained 
by the W.K.B. approximation. There are two solutions A , ,  which can be chosen 
so that for large R (small v) 

Since ~ ( y )  does not vanish, these representations hold for 0 < y < y,. (There is 
no Stokes phenomenon.) In  equation (20) the multiplicative constants have been 

(21) 
chosen ao that W(A,,A,) = 1. 

The following fact is important. Let 

argr(y) = Yw. (22) 

(23) Since Re@) > 0, we have - n <  y? < 0. 
We define the square root in equation (20) so that 

where 

Then 

Therefore, 

for all y’. From this it follows that, for fixed k and large R, A, and A, are, respec- 
tively, rapidly decreasing and increasing functions of y. 

t This assumes vpx is finite and well behaved in the limit v --f 0. That this is indeed 
so is readily verified in the h a 1  result. 
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One solution of equation (16) is 

‘g’(Y0) = - R/’1&/07 Yh) ‘ k h 7  ’Yh (28) 

with A Y O ,  Yh) = -Al(Y>)A,(Y<). (29) 

0 

A general solution is obtained by adding a linear combination of independent 
solutions of the homogeneous equation [equation (19)]. Thus, 

&(Yo) = V ( Y 0 )  + ElAl(Y0) + E,A,(Yo). (30) 

Here El and E, are constants which can be determined from the requirements that 
upk = 0 at y = 0, yl. 

From equation (14) we find that these conditions are that 

(31) 

CJ, - DI, Solving for El, gives E -  
- IlJ2-12Jl’ 

where 

and 

(34) 

In  order to estimate V$’) and El,, in the limit of large R it is useful to invoke 

Let F(y) be a continuous function (independent of R) with bounded first 
the following lemmas. 

derivative. Let 0 < a < /3 < yl. Then 

The proof of these lemmas is based on the rapidly decreasing and increasing 
properties of A, and A, noted above. It uses standard techniques of asymptotic 
estimation and hence is relegated to the Appendix. 

Insertion of these results into (28) yields 
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Comparing with equation (15), we see that 

lim v ) ( y o )  = ?j”(yo). 

is similar. The results are 
R-tW 

The evaluation of 

Since the real part of [iy(y’)]* is always positive, we see that 

and 

lim EIAl(y) = 
R-tw 

lim E2A2(y) = 
R-tw 

(43) 

(44) 

In  order to see the nature of the singularity in these limit functions we consider 
the integral of their product with a smoothly varying function F(y). As in the 
proof of the lemmas (Appendix A) one finds that 

These results can be stated concisely in the form 

(Here the delta function is interpreted so that 

Thus, we have found that 
(49) 
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If this form is inserted into equations (13) and (14), the theorem follows. [The 
difference in behaviour between vpk and upk at the boundary points occurs 
because $, (O)  = 0 = $2(y1) which is not true of &(O) and &(y,).] 

4. Conclusion 
In  the previous section an identity between the Laplace transform of the 

inviscid solution and the limit for small viscosity of the transform of the viscous 
solution was demonstrated. We would like to conclude from this that the solu- 
tions of the initial-value problem coincide in the limit. To do this we must show 
that the limiting process and the Laplace inversion integration oan be inter- 
changed. It is readily seen that the only difficulty that could occur is that the 
region of integration over p is infinite. However, for large p we may neglect the 
terms involving u,(y) in the basic equations (i.e. for large p we can regard the 
unperturbed flow as quiescent). Thus, to conclude that the solutions of the initial- 
value problems are identical it is sufficient to show this for the problem with 
u,(y) = 0. This is done in Appendix B. (The results there also show the form of 
the functions for finite viscosity which pass over into the singular functions de- 
scribed above.) 

The conclusion is then the following. Consider a given initial perturbation. 
The flow at a fixed time later is, except for the singular behaviour of the tangential 
velocity at the boundaries, exactly the same whether computed with the Euler 
equations or with the Navier-Stokes equations and passage to the limit of 
zero viscosity. 

The restriction to a fixed (finite) value of the time is important. We cannot 
justify interchange of the limits Y -+ 0 and t --f 00. Thus, in the example in Appen- 
dix B, it is seen that 

limu,, w, = 0 (all finite Y), (51) 

but lim ulinv, v*nW + 0. (52) 

t -+a 

t -+OD 

This work was supported in part by the Office of Naval Research, U.S. Navy 
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Appendix A: proof of the lemmas 

for the fist lemma. 
Since the proofs are quite similar we restrict ourselves to sketching a proof 

It is desired to show that if F ( y )  is a slowly varying function then, for large R, 
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For large R we use the asymptotic representation, equation (20), for A,. Then 

and integrate by parts. Since the exponential factor vanishes rapidly with in- 
creasing y it  is clear that the main contribution is that due to the part evaluated 
at the lower limit. If F ( y )  is subject to the appropriate restrictions, we see by 
repeating the process in the remaining integral that the corrections are of the 
indicatedorderof magnitude. In  this way the result, equation (A l), is found for K.  

Appendix B 
It is necessary, as indicated in $ 4 ,  to show the identity of the solutions of the 

initial-value problem for the special case uo(y)  = 0. To keep the algebra simple 
we consider y l  = co and V(Y7 0) = S(Y - Y 3 .  (B 1) 

Thus, for finite viscosity, we are to solve the equations 

subject to the boundary conditions 
i avpk 
k aY 

vpk = 0 = upk = -- at y = 0,co. 

For the inviscid problem equations (B 2) and (B 3) with Y = 0 are to be solved 

(B 5 )  
using only the condition vinv = at = o, co. 

pk 

The solution of equation (B 2) which satisfies equation (B 5 )  is, in either case, 

_ -  
where (assuming E > 0)  

(B 7)  
1 
k G(y ,  yo)  = - - e-ky> sinh ky<. 

In the inviscid case we find from equation (B 3) that 

Therefore $?(Y) = G(Y7YLW (B 9) 

wjnw(y, t )  = G(y,  yk) for t > 0. (B 10) 

Since the inverse Laplace transform of l / p  is 1 for all t > 0 we see that 
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For finite v the general solution of equation (B 3) subject to the condition of 

&(Yo) = V'(Y0) +ElAl(YO), (B 11) 

where %@(Yo) = - RP(Y0, Yl3, (B 12) 

P(YOiY8 = - - ~ l ( Y > ) A 2 ( Y < h  (B 13) 

vanishing at infinity is 

and 

with y = R)(p + k2/R)&. (B 15) 

The constant El is determined by the requirement 

This gives 

av 
aY 

- @ = o  a t y = o .  

The inverse Laplace transformation then gives 

Here C is a contour parallel to the imaginary axis and to the right of all singulari- 
ties of the integrand. After some straightforward manipulation these become 

J T Y O ,  t )  = A(Y0 - ?./A> t ) ,  

(&A,) (Yo, t )  = - 2e-kY,@A(yo, 0 + A(Y0 +Yi, t )  + V Y O ,  t ) ,  

(B 20) 

(B 21) 

where 

and 

Passing to the limit in the integral expression for A clearly gives 

lim A(y,t) = 6(y). 
R - t m  

We can, of course, evaluate A ( y ,  t )  for all finite v also. This gives 
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Except for the first factor this is just the familiar heat pole solution. It vanishes 
as R -+ co for all fixed y + 0 and is such that the integral over all y is e-kal’R. (This 
serves again to justify equation (B24).) Inserting the expression for V(O) in 
terms of A into equation (B 17) shows that for small, but finite viscosity, the first 
term is just the inviscid result averaged with respect to y; over a distance which is 
of order (4t/R)*. 

Since the function I? is non-singular when R -+ 00, it suffices to pass to the limit 
under the integration sign. Thus 

Closing the contour with a large circle in the upper half plane yields then 

lirn r ( y , t )  = 0. 
R-tw 

Combining these results shows that 

Using this result in (B 17) then gives 

lim vl(y, t )  = vifiv(y, t )  
R+w 

1 i av, o<y<co ,  
lirn u,(y, t )  = - - ( y ,  t )  = 

R-XU k aY 




